
	 1	

QMCPACK
	
Summary Version

QMPACK	v3.4.0	released	on	29	January	2018,	included	with	
this	benchmark		and	also	available	via	
https://github.com/QMCPACK/qmcpack/releases	

Purpose of Benchmark

Test	performance	of	diffusion	Quantum	Monte	Carlo	methods.	
Obtain	a	fixed	number	of	statistical	samples	within	the	shortest	
overall	wall	clock	time.	

Calculations	are	performed	for	a	256	atom	nickel	oxide	(NiO)	
supercell	containing	1536	up-spin	and	down-spin	
electrons/3072	electrons	total.	

Characteristics of Benchmark

QMCPACK	is	an	open-source	continuum	quantum	Monte	Carlo	
simulation	code.	Electron	positions	are	randomly	sampled	by	a	
large	number	of	Markov	chains	(or	“walkers”).	The	benchmark	
uses	a	diffusion	quantum	Monte	Carlo	method	that	uses	a	
diffusion-and-branch	algorithm	and	a	target	population	of	
walkers	to	evolve	the	walkers	in	time.	During	the	simulation,	
the	fluctuating	population	of	walkers	is	load	balanced	between	
nodes	at	every	time	step	of	the	simulation.	In	production	
simulations,	measurements/statistics	are	collected	at	each	
time	step	of	the	simulation	and	for	all	the	walkers.	

Parallelization	is	performed	over	walkers:	each	MPI	task	has	a	
number	of	walkers	that	are	then	distributed	over	OpenMP	
threads.	QMCPACK	can	also	use	CUDA	instead	of	OpenMP	per	
MPI	task.	Strong	scaling	is	high	due	to	the	high	cost	of	
computation	relative	to	communication	steps.	However,	each	

	 2	

walker	has	to	be	initially	equilibrated,	so	the	first	250	steps	of	
each	walker	do	not	count	towards	useful	statistics.	The	figure	
of	merit	measures	the	relative	time	to	solution	compared	to	
reference	run	for	a	fixed	number	of	total	statistics.	Thus,	a	
hypothetical	node	that	can	run	50%	faster	improves	the	figure	
of	merit	more	than	a	hypothetical	50%	more	nodes,	because	
proportionately	less	time	is	spent	in	equilibration.	Though	the	
benchmark	runs	are	somewhat	shorter	than	what	can	be	
expected	in	production,	the	equilibration	stage	is	essential	to	
obtaining	meaningful	statistics.		

The	benchmarks	are	particularly	sensitive	to	floating	point,	
memory	bandwidth	and	memory	latency	performance.	To	
obtain	high	performance,	the	compiler’s	ability	of	optimize	and	
vectorize	the	application	is	critical.	Strategies	to	place	more	of	
the	walker	data	higher	in	the	memory	hierarchy	are	likely	to	
increase	performance.

Mechanics of Building Benchmark

QMCPACK	uses	C++11,	CMake,	OpenMP,	MPI,	BLAS/LAPACK,	
Libxml2,	HDF5,	Boost,	FFTW.	CUDA	is	used	with	GPUs.		

Full	instructions	to	build	and	run	QMCPACK	are	included	in	the	
README.md	and	described	in	more	detail	in	
https://docs.qmcpack.org/qmcpack_manual.pdf	

This	includes	example	build	recipes	for	current	leadership	
platforms,	Linux	workstations,	and	various	compiler	
combinations.	An	initial	build	on	RHEL	or	Ubuntu	is	
recommended.	Use	of	toolchains	developed	for	older	versions	
of	QMCPACK	is	not	recommended,	supported,	or	tested.	

To	build	the	MPI-OpenMP	version,	typical	steps	are:	
cd build
cmake -DCMAKE_C_COMPILER=mpicc \
 -DCMAKE_CXX_COMPILER=mpicxx \

	 3	

 -DENABLE_SOA=1 \
 -DQMC_MIXED_PRECISION=1 ..
make -j 8

To	build	the	MPI-CUDA	version,	typical	steps	are:	
cd build
cmake -DCMAKE_C_COMPILER=mpicc \
 -DCMAKE_CXX_COMPILER=mpicxx \
 -DQMC_CUDA=1 ..
make -j 8

We	require	the	OpenMP	version	to	be	built	specifying	
QMC_MIXED_PRECISION=1,	which	enables	mixed	
single/double	precision	numerics,	consistent	with	the	defaults	
for	the	CUDA	GPU	build.		

ENABLE_SOA=1	enables	“structure	of	array”	data	layout	
optimizations	that	significantly	improves	performance	on	
modern	CPU	architectures.	The	CUDA	implementation	already	
includes	these	optimizations.	

QMC_CUDA=1	enables	CUDA	builds.	The	CUDA	version	has	a	
fixed	ratio	of	1	MPI	task	per	GPU.	QMCPACK	can	address	
multiple	GPUs	per	node	with	multiple	MPI	tasks.		

Known	build	problem	with	CUDA	builds	(only):	on	some	systems,	
cmake	must	be	run	twice	before	make	using	same	configure	
options..	Symptom:	rapid	make	failure	due	to	type	definition	
problems.	Solution:	cmake	-DQMC_CUDA=1	..;	cmake	-
DQMC_CUDA=1	..;	make	

To	assist	characterizing	single	node	performance,	QMCPACK	
can	be	built	without	MPI,	specifying	QMC_MPI=0.	The	time	per	
step	is	relatively	constant	but	varies	a	little	depending	on	the	
(random)	moves	taken.	The	benchmark	includes	multiple	steps	
to	obtain	a	more	reliable	average.	

QMCPACK	includes	unit	and	integration	tests	accessible	
through	the	“ctest”	system	as	described	in	

	 4	

https://docs.qmcpack.org/qmcpack_manual.pdf	.	These	use	16	
CPU	cores	or	a	single	GPU.	e.g.	"ctest	–R	short”	runs	the	short	
integration	tests.	While	the	integration	tests	are	statistical	and	
may	occasionally	fail,	the	majority	of	the	tests	(>90%)	should	
pass	for	a	valid	installation.	

The	CORAL2	benchmark	is	similar	to	the	NiO	performance	
tests	integrated	with	ctest	and	included	with	the	current	
QMCPACK	distribution.		

Running qmpack

For	GPU	runs:	
#Single MPI task, assume 1 GPU per task
mpirun -n 1 ./qmcpack NiO-example.in.xml >out_1

If	the	example	input	is	not	changed,	increasing	the	MPI	task	
count	will	weak	scale	the	run:	
Does 1024x work than single MPI
mpirun -n 1024 ./qmcpack NiO-example.in.xml >out_1024

For	CPU	runs,	use	a	thread	count	that	is	a	factor	of	the	walker	
count:	
	
grep walkers NiO-thread-example.in.xml
 <parameter name="walkers">32</parameter>
export OMP_NUM_THREADS=32
mpirun -n 1024 ./qmcpack NiO-thread-example.in.xml
Gives 1024*32 total walkers.
Walkers is specified per MPI task
	
Mechanics of Running Benchmark

The	benchmark	run	consists	of	an	initial	short	variational	
Monte	Carlo	run	to	prepare	walkers	for	several	“blocks”	of	
diffusion	Monte	Carlo.	Each	block	consists	of	a	number	of	steps.	
The	performance	in	the	diffusion	Monte	Carlo	sections	is	used	
to	estimate	a	rate	of	work	which	is	then	used	to	construct	the	

	 5	

figure	of	merit,	as	described	below.		

In	the	benchmark	the	number	of	blocks	is	fixed	at	2.	A	
minimum	of	16	steps	per	block	is	required.	The	number	of	
walkers	per	MPI	task	and	the	number	of	steps	may	be	adjusted	
to	optimize	performance	and	to	help	extrapolate	to	the	
proposed	system	architecture	and	configuration.	E.g.	To	align	
the	walker	count	per	MPI	task	with	CPU	or	GPU	compute	cores	
or	to	balance	NUMA	domains	etc..	Multicore	CPU	runs	using	
OpenMP	parallelization	typically	use	one	walker	per	thread	or	
hyperthread.	A	negligible	amount	of	I/O	is	performed	at	the	
end	of	each	step	and	block.	

To	set	the	number	of	walkers	per	MPI	task,	edit	the	“walkers”	
line	in	the	input	XML.	The	reference	runs	were	computed	with	
14	walkers	per	GPU,	equal	to	the	number	of	SMs	on	K20X	
GPUs.	Greater	values	may	potentially	be	used	to	obtain	higher	
performance,	within	memory	constraints.	For	CPU	runs,	the	
number	of	walkers	per	MPI	task	is	typically	the	number	of	
OpenMP	threads,	or	a	multiple	if	efficient	hyperthreading	is	
available.		

The	figure	of	merit	is	based	on	the	time	taken	to	obtain	
819200000=5*163840000	total	samples	(steps)	after	allowing	
250	equilibration	steps	for	each	walker	considered,	computed	
relative	to	a	5x	smaller	reference	run	with	163840000	samples	
after	250	equilibration	steps	per	walker,	as	measured	on	
18000	K20X	GPUs	on	Titan	at	OLCF.	The	figure	of	merit	
therefore	includes	an	element	of	weak	scaling	reflecting	some	
of	the	improved	accuracy	desired	in	future.			

For	example,	on	a	hypothetical	system	with	18000	nodes	each	
with	80	walkers,	each	walker	would	have	to	perform	
819200000/(18000*80)=569	production	steps	after	
equilibration	or	819	total	steps.	Using	the	time	per	step	

	 6	

computed	from	the	benchmark,	the	time	to	complete	these	819	
steps	per	node	to	achieve	819200000	total	samples	can	be	
projected.		

A	commented	awk	script	with	the	reference	timings	to	
compute	the	FOM	is	included.		The	projected	FOM	should	
factor	the	expected	scalability	of	the	application	to	the	chosen	
node	count.	It	can	be	computed	by	extrapolating	timings	from	
measured	or	estimated	performance	on	lower	node	counts	to	
the	expected	node	count.	e.g.	a	projected	90%	parallel	
scalability	would	scale	the	FOM	by	a	factor	0.9.	Thus,	a	
hypothetical	machine	with	at	least	6x	more	nodes	each	10x	
more	powerful	than	Titan	would	likely	exceed	50x	for	the	
figure	of	merit.	

Reference	input	and	outputs	are	included	for	the	provided	
18000	node	baseline,	and	for	a	range	of	node	counts	down	to	1	
node.	These	indicate	currently	achievable	scalability	and	
runtimes.	

The	18000	node	baseline	takes	an	average	19.65	seconds	per	
step,	with	14	walkers	per	GPU	and	one	GPU	per	node.	
Execution	time	was	~15	minutes.	163840000	samples	
therefore	requires	650	steps	per	walker	after	equilibration	or	
900	steps	total.	The	baseline	used	to	compute	the	FOM	is	
therefore	19.65*(250+(163840000/(18000*14)))=17685	
seconds.	The	baseline	FOM	is	therefore	9262.1	
samples/second.	

For	the	provided	baseline	note	that	the	inputs	downsample	a	
large	read	only	lookup	array	by	specifying	meshfactor	=0.7	in	
the	input	XML	to	fit	in	the	6GB	GPU	memory.	For	actual	
benchmarks	the	production	meshfactor=0.9	should	be	
used,	consistent	with	the	provided	NiO-example.in.xml	and	the	
desired	increased	accuracy	on	future	hardware.	This	requires	a	

	 7	

minimum	~12GB	memory	with	16	walkers	per	node.	

Verification of Results

Due	to	the	short	nature	of	the	benchmark	runs	they	do	not	
become	fully	equilibrated	or	reach	the	target	error	of	
production	quality	calculations.	To	verify	the	results,	the	
average	energies	and	statistical	errors	can	be	computed	by	
postprocessing	the	*.scalar.dat	using	the	qmca	tool	included	
with	QMCPACK	in	nexus/executables.	Reference	energies	are	
included	with	the	titan	reference	files	and	README.	Large	
deviations	from	the	reference	data	may	indicate	e.g.	numerical	
errors	due	to	invalid	compiler	optimizations.	

Example profile

Fewer	than	10	kernels	contribute	to	the	majority	of	the	runtime.	The	256	atom	
entry	in	above	profile	was	produced	for	a	similar	run	to	the	CORAL2	benchmark	on	
NVIDIA	Kepler	class	GPUs.	The	inverse	update	usually	takes	a	greater	proportion	of	
runtime	on	lower	memory	bandwidth	architectures.	

	 8	

Change History

v20180112	

Benchmark	and	figure	of	merit	updated	to	include	an	element	
of	weak	scaling,	with	5x	more	work	specified.	compute_fom	
script	and	documentation	updated.	

Updated	to	qmcpack	v3.4.0.	Fixed	git-rev	issue	when	building	
from	tarball.		

Shortened	runs	used	to	obtain	baseline	data.	

Baseline	inputs	and	outputs	from	1-18000	nodes	added.	

Expanded	cmake,	toolchain,	and	build	notes.	

v20171206	

Initial	draft	

